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ABSTKACT

Originally, the techniques used by operational research tesms were borrowed
from other scientific fields. However, the scope of problems addressed by
this new discipline soon led to the development of special analytic methods,
including such now familiar terms as linear programming, game theory,
dynamic prograwming, queueing theory, and so forth.

This growth was accelerated by the parallel developmenit of the high-speed
digital computer and the modern concepts of solution algorithms and simulation
models. When computational storage and speed were limited, emphasis was on
the exploitation of a problem's special structure; as capabilities have
expanded and costs have diminished, emphasis has shifted to the problems of
data management for larger-scale problems. Efficient data-structure methods
have led to new methods for "unsolvable" combinatorial problems.

Concurrently, there has been an explosion in the theoretical literature.
Specialty journals flourish in the various methodological specialties, and

conference offerings have grown to an unwieldy size. Most major universities
now offer course degree programmes in O.R., based on topics which were
unknown twenty years ago, and using a wide variety of available textbooks.

Furthermore, it is increasingly difficult to draw a firm line between O.R.
and other disciplines, as successful techniques are routinely taught and
used in their fields of application, including a variety of new disciplines
such as transportation and urban planning, waste management, energy analysis
environmeutal engineering, health care systems, etc. O.R. methods have
also had a large influence on theoretical fields, such as mathematics,
statistics, and ecunomics.

Recent developments in selected methodological areas are surveyed to
indicato the variety and sophistication of O.R. techniques, and current
research trends. Selected bibliographic references provide an introduction
to the techniques, or to important new developments.

In conclusion, the current crises which have appeared within the profession
are discussed, and the prospects of this now-mature field are analyzed.
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THE ANALYTIC METHODS OF OPERATIONS RESEARCH

by

William S. Jewell

1. INTRODUCTION

When I received the invitation to survey the analytical tools of

operational research for this Meeting, I was extremel; pleased - first

of all, for the kind thought that I was qualified to do so; and, secondly,

for the opportunity to visit again the country where operational research

began over chirty years ago. However, as I considered the explosive

growth of the field since that time, I became apprehensive at the thought

of trying to covering so diverse a topic in a few words.

Perhaps some of you remember the actual situation in the middle of

the 50's - the time at which most methodology began to be developed. Your

Operational Research Society was about ten years old, the Operations

Research Society of America was about five, and the Institute of Management

Science had just been organized. The RAND Corporation had just published

a book entitled, "A Million Random Digits with 100,000 Normal Deviates"

for use in Monte Carlo simulation; an electro-mechanical device called

Queuiac was promoted in the ORSA Journal for emulating queueing problems. I
The transportation and travellina-salesman problems had just been described,

and neologisms like "sub-optimization" and "cost-effectiveness analysis"

were appearing. At M.I.T., where I was pursuing graduate studies in

engineering, there was no formal curriculum in operations research; our

only texts were brief notes by P. M. Morse, G. Kimball, B. 0, Koopman,

G. P. Wadsworth and others, RAND reports, "The Theory of Games and

Economic Behavior," by T. von Neumann and 0. MHrgenstern, and an esoteric

j -
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paperbrtk by Charnes. Cooper, and Henderson on the optimal mixing of

peanuKs and cashews. Our computer used vacuum tubes, and one walked

inside it for repairs; we solved what were considered very large trans-

portation problems (60 plants, 300 customers) in about thirty minutes.

Capabilities improved with the arrival of the first commercial computer,

but another student's simulation of vehicular tunnel traffic took longer

than real time! In 1955, I attended my first meeting of ORSA at Columbia

University. There were two theoretical papers by R. E. Bellman and

J. M. Danskin, eight application papers on production scheduiing and urban

services, plus 24 contributed papers - I believe it was the first time

that two pa:allel sessions were required to cover all the papers in one

day. Even by 1958, a comprehensive bibliography on operations research

only contained 3,000 entries (Case, 1958).

In contrast, the next ORSA/TIMS maeting in Miami in November, 1976,

will, over three days, have 160 sessions with about 980 papers! There

are probably over 400 texts in the methodologies of 0. R. now in print,

and a continually increasing number of specialty journals. A good bib-

liography on any of the subfields of 0. R. can easily include several

thousand entries. Over 40 colleges and universities in the United States

now offer some form of 0. R. education; over 20 of these have named

departments. The technical capabilities of computers seem boundless,

but our propensity to enlarge the boundaries and the scale of the models

keeps pace, as we tackle national, international, and even global problems.

In every dimension, the field seems limitless.

My plan of attack to reduce the survey to manageable size is as follows:

First of all, I will describe briefly the major methodological areas,

and present what I consider to be important recent trends, including
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references which seem representative and interesting, provide convenient

summaries, or which might serve as gateways for further reading. I am

grateful to my many colleagues who have helped to organize this biblio-

graphy, however, the fi Tal selection is mine, and no claim tc completenes,

or showing historical priority is made..

Some methodological areas, Luch as control theory, ace already too

large to survey; other areas were excluded because they seem to have reached

deadends (game theory, information theory) or because their scientific

basis is still being developed (simulation, management information systems,

urban and public systems). Except for a brief section on business models,

applications of methodologies could, unfortunately, not be included in

this limiti d space.

Finally, ! would like to conclude by descrihing the influence of 0. R.

methodologies on oth,'r disciplines, considering some of the crises facing

the profession, and giving my perspective on the prospects for this now-

mature field.

Operational research is, above all, an optimizing science, and we begin

with a discussion of optimization methods.

r

- -~- -- =- ~ -f ~- - - 7
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2. UNCONSTRAINED OPTIMIZATION

Unconstraincd maximization (minimization) is the problem of finding a

value x * fa vector x = xlx 2 , ... , xn ] such that f(x > f(x)

(or f(x ) < f(x)) for all x , w1-ere f is a given function, usually

analytic. Most optimization methods require that f have certain smooth-

ness and shape properties, such as continuity and concavity (convexity),

so that if an x satisfies the necessary conditions for a local optimum,

Vf = (f(X*)/ax (1. 1,2, ... , in)] 5 0 plus 2nd-order conditions, then
i

X is also globally optimal. This enables one to use local exploration

to lead to the global optimum.

Assuming that the gradient Vf is easy to calculate, the most popular

algorithms are based on the idea of steep ascent (descent) - that is, from

0the current solution, x , find a new solution by moving with (against)
1 0

the gradient, x = x + SVf , where S is a positive definite matrix,

varying from step to step, which may have only diagonal terms (representing

current step size), or may be more general, attempting to avoid the slow

convergence often encountered near x . These methods are by now quite

efficient for problems with several hundred variables. If derivatives cannot

be easily computed, then a variety of direct search methods are available.

Theoretical details aze in (Luenberger, 1973) and (Avriel, 19k); numerical

comparisons may be found in (Himmelblau, 1972); (Powell, 1970, 1971)

has convenient surveys; (Wilde, 1964) details one-dimensional search

procedures.

If equality constraints are present, then one can, in principle,

use Lagrange multipliers to convert the problem to an unconstrained optimum,

and apply gradient methods (Kwakernaak and Strijbos, 1972), (Avriel, 1976).f Alternatively, one can use nonlinear programming methods, described below.
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Unconstrained optimization methods are useful primarily in the

simple pedagogical models, or in engineering design problems. Their

main value is as a foundation for more complicated methods where equality

or inequality constraints are present.

I°
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3. LINAR PROGRALIMUG

Constrained linear optimization is, by any measure, one of the most

successful "new" icethodologies of operational research-. The problem is to

optimize a linear function subject to linear inequality and equality

constraints; in the usual canonical form:

Max MiLc X)
X

(31) AX b

X > 0

where x an- c a -.-ecters, b is an -vector, a-d A is an 

matrix (m < n) . In this form, linear inequality constraints have been

converted to equalities through the addition wid subt-.tion of non-

negative "slack" variables, and incorporatet into Ax - b . Individual

variable constraints, such. as 1. < x, < u , can also be so incorporated,

but most computer codes have s!ccial features to handle them separat-ly,

so as to keep down the dimension of A

The success of linear progra=--ing is due first of all to its usef--lness

as a =del. The accounting world is full of linearity assu=ptions as to

the costs of resources consLzed and the value ai goods and services produced.

Tso that c x is a good approximation to most management objectives.

Many production tecnnologies are also litxeaL, at least to a first approxima-

tion, so that portions of A h-ich represent conversion from activity J

to resource i need onl - an estimte of the conversion coefficient aj ;

other portions of A asually have large nubers of zero and unity coeffi-

cients because of the large .u=ber of conservation or 'bookkeeping"

relations between different activities - these are intrinsically linear.



Finally, upper and lower bounds (especially Z = 0) on the activity

leels, x , are characteristics of our finite world.

The optimal solution to (3.1) is determined almost completely by

the constraints. If there are no ties for the optimal solution, x ,

one can show that the optimum is determined by specifying a basic set B

of m variables, x Ix. j J c 131 . The values of these variables

are determined by solving the square systc-m

B
(3.2) B  b

where B is the set of m columns of A correspondtng to B ; these must

represent m linear independent vectors in m-space (a basis) so that

det B #0. These values will, of course, be feasible only if xB > 0 (and

usually x > 5) The remainder of x is determined by setting the n - m

nonbasic variables, x {x i J Si to zero-. In geometric terms,

selecting the n - m nonbasic variables determines a corner, or extreme

point of the convex polyhedron of feasible solutions, (Ax = b , x > 0}

Since there are n () () ways to select a- basis (although not all

result in feasible x)-, this characterization of x suggests there are a

combinatorial number of basic feasible solutions to explore.

However, Dantzig (1963) and his coworkers were able to show that an

ascent (descent) method, which proceeds from one extreme point of the.

constraint space to a better extreme point, ia a computat.ionally efficient

procedure, taking on the order of 2m - 3m steps, rather than some

combinatorial number related to the number of var.ables, a . Ths fortuitous

property of the "simplex method," established through comaputationai experience,

is the second reason for its popular.ty. E'ven today, there is 11o satisfactory

theory for the rapid convergence of this methad; theoretical bounds on the
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number of iterations required .re extremely large, except for a few

special problems.

The details of the simplex algorithm are quite straightforward of

interpretation, although the actual procedures seem strange at first glance.

To avoid continued re-inversion of different m x m matrices, BIB 2 , B . ,

to solve (3.2) successive bases are chosen which differ only in one

member; by using the Gauss-Jordan reduction method on the full matrix A

(with b adjoined), one can easily check that the current and forthcoming

extremal solutions are feasible. To be assured that this move increase

(decreases) cTx , the current solution is effectively substituted -back

into- the functional, and local gradients can be read off directly from

the new coefficients in front of the nonbasic variables. A "pivot step"

(application of Gauss-Jordan reduction to one column of data) then displays

Che next basic feasible solution.

In economic tezms, the choice of a "good" direction is made by imputing

-the -unit profits cB of each current by basic activity back to r. unit

prices y = [ylY 2, ..., ym] associated with each constraint by solving the
T B

dual system B = c ; the local vector of gradients leading away trom the

current extreme point is then gotten from c - A y . This leads to the

conceptually elegant theory of duality, in which it is shown that (3.1) is

equivalent to another linear program:

Min (Max) b y

T(3.3) A y > (<j c

y unrestricted, ,,

in the sense that, if one program has a finite optimum, then so does the
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other, and by= C The dual variables, y , are essentially extended

Lagrange mulcipliers. Optimality is recognized by the "complementary

*T T*
slackness" condition, (x (A y 0 = 0 .

There are many different elaborations upon the basic simplex method

that purpcrt tc solve problems with special data in more efficient ways,

or tn fully .sploit special structure or computational capabilities, or

which carry out post-optimal sensitivity analyses. Full details on this

by now classical topic may be found in almost any of the approximately 200

texts (Gerber, 1974) on linear programming, such as (Dantzig, 1963),

(Gass, 1958), (Simonnard, 1966). FORTRAN and ALGOL programs are given in

(Kinzi, Tzschack, Zehnder, 1971). See also the comments in (Woolsey,

19073).

There is a great deal of difference between the classroom representa-

tions of linear programs and the actual computer codes (a term to avoid

confusion with "programs") which solve them. An l.p. code must not only

accept and convert a variety of input constraints, it must "get started"

(by itself, or from a prior solution), reject. unfeasible problems, and

carry out a variety of post-optimal sensitivity analyses. Furthermore, as

the size of successful l.p. solutions is increased, there has been increasing

pressure to further increase the capabilities of advanced programming systems.

This means that a great deal of attention must be paid to what we might

call the computer science aspects of the program: allocating data between

different storage media, and moving it about rapidly; efficient methods

of storing inverses of sparse matrices, updating them during the pivot to

a new extreme point, and cleansing them of accumulated round-off errors;

and finding the best compromise between moving in the direction with steepest

gradient or the one with greatest change in c Tx . Details may be found
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in (Orchard-Hays, 1968), (Beale, 1967 and 1970), (Bonner, 1969); (Tomlin,

1972) and (White, 1973) have more recent surveys.

For small-scale linear optimization, we are clearly reaching a point

of diminishing returns on solution efficiency. A problem with m = 200

which cost $1,000 to solve in 1956 car, now be turned out for under $20;

most of this improvement is due simply to the generally decreasing cost of

digital computation, which trend will no doubt continue. However, the

demand for increased computational capabilities continues unsatisfied,

as programmers extend the size and boundaries of problem formulation.

Currently, problems with m = 2,000 are routinely solved, and there are

large-scale systems which can handle m > 10,000 ; since there is no theory

to predict simplex method efficiency, evaluation of new algorithms must

follow computational trials. Occasionally there are surprises; for

example, Harris (1973) reports a reduction by factors of 2 to 6 in the

number of iterations needed to solve problems with m = 2-5000 , by

using the concept of a fixed datum basis in which to compute and compare

gradients.

One way of handling larger size problems to take advantage of any

special structure in the constraints. As mentioned above, it is trivial

to include individual constraints of the forms Z. < x < u . In many
3~ -

scheduling and distribution probiems, one encounters constraints of the

form

K <  xj <uK
Jc K

where the [JKI are nonoverlapping subsets of the variables. Problem- with

a large percentage of constraints of this type have important savings in

computer time by using the generalized upper bounding technique of Dantzig

and Van Slyke (1967), and recent l.p. codes include this capability.
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Large-scale multi-time or multi-rector planning models have highly

structured mnattices A , with "block-angular" and "staircase" nonzero sub-

matrices (often with repetitive internal structure), and zero elements

elsewhere. For many years it was thought that there might be efficiencies

by using the simplex method separately on each subproblem, periodically

reconciling the linking constraints in an overall simplex approach; how-

ever, in spite of the large literature on these methods (see, e.g. (Lasdon,

1970)), the coding techniques are quite difficult and specialized to the

problem structure, and this approach ia not now an important contender for

these problems.

Another conueptually appealing approach to large-scale l.p. problems

which have many separable subproblems linked together by a few "master"

constraints has been the decomposition method of Dantzig and Wolfe (1960).

In this method, different values of artificia objective coefficients are

"sent down" to the subproblems, which are solved individually (and hence

efficiently), producing a variety of extreme point solutions for each subset

of variables; the "master program" is then solved to satisfy the linking

constraints by mixing these extreme-point "plans" in an optimal way. The

dual solution to the master program then produces another set of surrogate

goals for the subprograms, which in tern provides other plans for the master

optimization. Perhaps the most important feature of this approach is that it

quantifies the conditions under which partial or completely decentralized

economic planning can take place (Baunol and Fabian, 1964). However, as a

computational strategy for purely linear programs, decomposition has proven

disappointing. It is still a useful approarh when the subproblems are not

linear programs (see the cutting-stock problem below) or are soluble by

special procedures (such as transportation problems), or are linearization
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approaches to nonlinear programming; Lasdon (1970) has several applications

of the decomposition approach.

In a recent ORSA/TIMS Panel (entitled "Is Mathematical Programming

Moribund?"), D. Smith described the four eras of mathematical programming.

In the '50s, when the simplex method was new and incompletely understood,

the basic problem was to write l.p. codes for the different computers;

because of size and speed limitations, emphasis was also placed on develop-

ment of special-purpose algorithms for special model structures. By the

'60s, fast commercial computer codes were available for production use, and

the botcleneck was in the translation of output into the management process;

feastures such as post-optimal sensitivity analysis were added, and more

attention paid to simplified data entry, and to summary report generators.

As computational capabilities and management sophistication have increas-

in the '70s, we find model boundaries expanding, and nonlinear, integer, and

decentralized optimization capabilities are being added to the computing

systems. Finally, as we head into the '80s, the routine solution of ex-

tremely large problems raises enormous questions of data-base management:

how will data be gathered, stored? How will it be checked, cleansed,

and updated? Who will certify the results of the optimization and what

methods will be used?
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4. NONLINEAR PROGRAMMING

Optimization problems with nonlinear objective functions and/or

nonlinear inequality constraints are of increasing importnce in

operations research.

The earliest models were of chemical, metallurgical, and hydraulic/gas

transmission processes, where the basic transformations are nonlinear,

and in engineering design problems (Duffin, Peterson and Zener, 1967),

(Zener, 1971), where empirical "posynomial" forms, H x are

encountered. Quadratic objectives arise naturally in least-squares

approximations (Golub and Saunders, 1970), in electrical networks

(Dennis, 1959) and control applications (Luenberger, 1972) where energy

dissipation is minimized, and "n location and space assignment problems

where Euclidean distance is the measure of optimality. Even with linear

economic assumptions, the system objective may be profit-per-unit-

(item, time, trip, etc.), giving a linear fraction, the ratio of two

linear forms, to be optimized. In so-called stochastic progranming,

the objective form includes the expected cost of compensatin;. for the

random effect of a decision (Sengupta, 1972), (Vajda, 1972). Nonlinear

constraints arise from similar ". .ons.

In order to retain the desirable property that a local optimum is

also a global optimum, one usually restricts investigation to the so-

called convex programs, those that can be put in the form:

Max (Hin) fCx)

g j(x) 0 (j 1,2, ... , p)

(4.1) Ax -b

X 0,
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(see Lasdon, (1970)). The more direct "approximation programming"

approach replaces nonline..-, functions by their first-order Taylor

series approximation t ..r the current solution, x t  ; under

certain conditions, thly. " i ,31ution to the current l.p. leads

to a new estimate x where another approximation is made, and

so on. The (generalized) °. duced-gradient" algorithm partitions the

variables into basic and a:nussic sets, as in the simplex algorithm,

and consider the optimizat.Lon only in terms of the latter, thus

"projecting the gradient." The "cutting-plane" algorithms turn a

problem into a linear objective with nonlinear constraints, and then

successively bound or support the desired region by a sequence of

hyperplanes. Details and further references oa these and other simplex-

like. method3 may be found in (Reale, 1967), (1immelblau, 1972) and

(Avriel, 197*'. Most of these algorithms have rather slow convergence

since local movement must be restricted to guarantee feasibility or

convergence. The exception is the generalized reduced gradient method

which seems to remain amovg the best nonlinear codes (Colville, 1970).

Turning now to the methods which are more clo;ely related to

unconstrained optimization, we note that, if ue have a current solution

x which is in the interior of the solution space, we can use a steep

ascent method, moving in a sequence of straight-line steps until the

optimum or a constraint is reached. If the current solution lies on

the boundary of a constraint (or if the original fnrmulatinn has linear

equality constraints), then a (locally or globally) feasible direction

must be chosen. In the "gradient projection" approach, due to J. B.

Rosen, tht gradient is projected onto the active onstraint hyperplanes,



and a step is taken in the (reduced) steepest descent direction, until

the Putimal point along this line is reached, pcssibly with another

constraint becoming active; nonlinear constraints can be handled by

approximation, but then extra steps to re-enter the feasible region

may be needed. On the other hand, the "feasible directions" method,

due to G. Zoutepnd-k, determines only directions that are totally

feasible, but has difficulty accommodating liu.ar equality constraints.

Both of these methods have been considerably elaborated and improved

by coupling them with modern methods of steep ascent. A recent survey

of the many possible algorithsms is in (Avr__1, 2976).

Penalty function methods operate differently, by incorporating

the constraints into the functional in various waits, and using unconstralned

optimization techniques. Exterior penalty functions add nonlinear costs

whenever the solut n trajectory leaves the feasible region. In the

more popular interior penalty methods, nonlinear "barrier'" are placed

in the interior of the feasible region to keep the optimal solution

away from the boundaries; these barriers are slowly relaxed so that

the sequence of unconstrained optima converges to x . For example,

if all the constraints are of the form gxi > 0 , one would maximize

f(x) - I g W(x) fox A decreasing sequence of X . This approach
i

has been extensively studied by Fiacco and McCormick (1968), and seem

to bc the most successful way to tackle problems with strongly non-

linear constraints (McCormick, 1971). See also (Avriel, 1976) and the

numerical example in (Himmelblau, 1972).

An important special class of nonlinear programs are engineering

design problems in which the objectives and constraints are composed

.... -< ... I - = r tr
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where f(x) is a concave (convex) function, and each nonlinear

constraint is-an inequality, formed only from concave functions.

This guarantees that the total constraint space is a convex region,

and that local search methods will converge, if properly set up, to

the overall optimutm. Occasionally, nonconvex objectives of special
*

form can be handled; otherwise, one must be content with an x

which may only be locally best.

A glance at recent texts in nonlinear programming ('immelblau,

1972), (Luenberer, 1973), (Avriel, 1976) reveals that there is no

single preferred method, but rather a variety of different approaches

suited to the many different special forms that (4.1) can take. The

-methods divide themselves naturally into those based strongly on l.p.

techniques, those based upon unconstrained optimization algorithms,

and specially-developed algorithms.

In the first category, we usually have no (or few) nonlinear

constraints, and only mildly nonlinear objectives. The first remark

is that quadratic programs, where f(x) = c x + x Q is

a negative (positive) semidefinite matrix, can be solved using variants

of the simplex method (Dartzig, 1963), (Boot, 1964). Linear fractional

programs, where f(x) = cx/d x is neither convex nor concave, can

be handled by treating the denominator as a parametric variable (see,

e.g. (Lasdon, 1970)). More generally, we can use linear approximations

to the nonlinear functions in several different ways. The first approach

is tc. use "grid linearization," with each nonlinear function recursively

definod in terms of local piece-wise linear forms; the complete method

is related to the decomposition algorithm, and is especially simple if

the nonlinear function are of separable type, f(x) = fj (x)

* ___ ~ -A 
--
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of posynomials. These problems, referred to as geometric programs,

have been extensively analyzed, and special-purpose algorithms developed

(Duffin, Peterson, and Zener, 1967), (Zener, 1971), (Beightler and

Phillips, 1976). It is also possible to find approximate solutions

using the simplex method (Ecker and Zoracki, 1976).

Optimality in nonlinear programs is recognized by constructing

extended Lagrangean multipliers and checking that the so-'.Lled "Kuhn-

Tucker conditions" (similar to complementary slacknes. in linear programs)

are satisfied. These multipliers are essentially dual variables and

have similar economic interpretations; yet, duality theory does not

seem to play a large role in nonlin&Ar computations. Part of the

difficulty is that there are many different possible dual formulations

ro nonlinear programs, and, in contrast to l.p., the primal variables,

x , also appear in the dual programs, thus preventing their independent

solution. The other difficulty is that dual formulations may require

delicate analysis; Geoffrion (1972) illustraLes some of the difficulties.

Convergence properties are also difficult to establish (Wolfe, 1970),

(Zangwill, 1969).

Nonlinear programming rethods are finally beginning to sort themselves

out after a period of diverse theoretical development. What is needed now

is extensive computational comparison on large-scale practical problems

to further match method to problem; it is probably too much to hope that

a universally efficient method will ever be found.



5. NETWORK FLOW MODELS

If one had to identify the most popular application of linear

programming, it would certainly be the network flow models, first in-

vestigated systematically by Ford and Fulkerson (1962). In the

prototypical problem, we imagine a connected network made up of nodes

i = 1,2, ..., N , and A directed arcs, each labelled by an odered

pair representing the start and terminal nodes for that arc. Thus,

arc (ij) starts at node i , ends at node j , and we suppose it

has flow x , limited by upper and lower capacities, l and u.,

and contributes a profit (cost) cii x to the total operation. The

optimization problem is then to find a maximal profit routing of flow:

Max (Min) c x
ij

5(x -x) q (1 1,2, N)

li. <x ui- ii uii

Here qi > 0 [qi < 0] represents external flow into [out of] the

network at node i ; the equality constraints represent "Kirchcff law"

conserva!-ion at each node - summations are understood to be only for

arcs actually connected Lhere.

(5.].) is clearly a linear program, but of very special structure,

since the constraint matrix only contains O's, + ls, and - l's, and

exactly one of each of the latter for each variable. One can show

that this implies:
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(1) There is exactly one redundanL conservation equation, and for

solvability I qi = 0

(2) The optimal solution is got by adding and subtracting the

boundary flows [q.1 , and is thus integral if they and the

capacities (1 u are integral;
ij' i1

(3) The l.p. basic solution is related to a network configuration

called a tree - a subset of N - 1 arcs which connects all thc

nodes, and has no loops;

(4) "Pivoting" from one extreme point solution to another is related to

passing flow around a loop in the network, so the only computation labor

is to find a "good" loop and stay feasible.

Because of this simplicity in the optimal solution, it has been possible

to develop fast, special-purpose computer codes which can handle much

larger network formulations than could be handled by a general l.p.

code - 10 nodes and 106 arcs being handled routinely (Glover and

Klingman, 1975).

(5.1) includes a variety of very useful simpler models. For

example, if the network consistv, only of all possible links between

one set of nodes with q1 > 0 (the plants) and another set oO nodes

with q < 0 (the customer), we have the classical "transportation

problem"; making the two uets equal in size and all qi + 1 further

reduces (5.1) to the "assignment problem." For a general network, if

n (5.1) cii I for a certain arc (ij) , zero for all others,

thtn we have the "maximum (minimum)-flow problem," which can be solved

by a simple "labelling method." (Mrd a-d Fulkerson, 1962); conversely,

f all qi z 0, but I = u for a certain nrc (ij) ,thenIi i
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we have the "longest (shortest)-route problem," for whieh a variety

of special-purpose algorithms are available (Dreyfus, 1969). In fact.

most algorithms for the general netv'.-rk problems are alternate

applications of max-flow and shortest-route procedures to different

arcs in the network. Easy modelling extensions include dynamic flow3,

capacities on nodes, parametric studies (etc.) (Fu,'kerson, 1966),

(Price, 1971).

The literature is full of a r.umber of confusing references to

"priml-dual" ["Ford-Fuikeran"], "dual," "simplex," and "out-of-kxlter"

methods. These are, .- ac.t, historical variants of the sa=e extreme

point metho4 which different only in starting procedures, selection of

new variables to enter the basis, treat=ent of initial infe3sibilities,

etc. Nevertheizzs, there seems to be considerable difference in computa-

tional efficiency of the different approaches, and upon the tanner in

which labelling information is stored; see thc_ many studies of Glover

and Klingman and coworkers (1974a), (1974b), (1375). This is important

because of the many general optimization models which have netvcrk-flw

substructures.

Incidentally, linear network oodels differ frm general linear

progrars in that reasonable bounds on the number of iteratioz can be

obtained (Edmonds and Karp, 1972), (Oreyfus, 1969). Zadeh (1975a),

(1973b) gives some worst-case examples.

The linear program dual to (5.1) has constraints of the form

Y, - Yj <) cii , where the dual variables [yi) have an interesting

physical. interpretation as node potentials, obeying Kirchoff's potential

law, Y1  YJ cj , for arcs in the optimal basic solution.

- r--.- --- ,
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This dual program also arises directly in the critical-path scheduling

models (see below).

Because of the success of the initial special-purpose algoritb;s,

several extensions of flow mode1 have been proposed, with as much

of the "on the network" simplicity retained as possible. For example,

in "networks with gains," we imagine that each arc (i,j) has a

multiplier kij which converts the incoming flow xij to an output

flow k..xi. ; this formulation includes a variety of interesting new

applications (Jewell, 1962), but requires complicated labelling schemes,

since the solutions are not integral, ana ronservation in-the-large

is not satified. Maurras (1972) reports on recent computational ex-

perience; Glover and Klingman (1973) show that some networks with

multipliers can, in fact, be reduced by scaling to ordinary networks,

and Troemper (1976) discusses scaling In general.

Another extension studied in greac detail is th- multicommodity

flow problem, in which several types of flow pa:s without mixing over

the network to satisfy their own boundary reaui.rements, but are

mutually constrained by each arc's total flow capacity. (Ford and

Fulkerson, 1958), (Jewell, 1966). Even with integral constraints, the

optimal answer may require fractional allocations of capacity. Models

of this type are important in communication networks (Frank and Frisch,

1971) and road traffic problems (Potts and Oliver, 1972). Recent

algorithms are given by Harcman and Lasdon (1972) and, with computational

experience, by Grigoriadis and White (1972).

It should be mentioned that quadratic profit (or loss) on arcs

can eaaily be handled; the procedures are a mixture of linear flow

- procedures and the wpethods of electrical circuit theory (Dennis, 1959).
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A vari( of other extensions to network flows have been proposed,

but, generally, the days of developing special-purpose algorithms are

over, due to the rapidly increasing capabilities of all-purpose

mathematical programming codes.- Networks remain, however, a fruitful

area of research for other types of models, such as stochastic flows

(Frank and Frisch, 1971), (Kleinrock, 1976) and various combinatorial

routing and covering problems (see below). (Bellman, Cooke, and

Lockett, 1970) give some other clever network problems.

Also in the network flow class of l.p.s are the critical-path

scheduling problems (Moder and Phillips, 1970). In this model, the

network represents the precedence relationships between the different

jobs of a project. The decision variables are dates {yi } on each

node, such that for (i,j) , there is sufficient time to complete job

(i,j) requiring time tij ; i.e. Y - Y, > ti * The objective is

to minimize total elapsed time on the project. Since this is exactly

the dual program to a longest-route problem, the solution procedures

are trivial; however, the model has found wide-spread utility in the

- - construction industry.

I '
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6. INTEGER LINEAR PROGRAM1ING

In many optimization problems the assumption of a continuous

decision variable is untenable and one would like an integral answer
for some or all of the variables; for instance, only an integer number

of round trips can be made by vehicles, and integral numbers of

spare parts stocked for space voyages. Variables which can only take on

values 0 or 1 are particularly useful in modelling selection processes

with an attendant fixed cost; for example, if activity j costs nothing

if not selected, and costs d. -'- c.x. when operated at level x.3 3 3

0< x. < u then we can formulate it as part of a ("mixed") integer

program with a cost d.z. + c x ,and constraints 0 < x. < u.z.
JJ ' -3- J '

z. e {0,i} . The [z.} might themselves be jointly constrained, see

(Balinski, 1965), (Garfinkel and Nemhauser, 1972a); other surveys of the

field are (Balinski and Spielberg, 1969), (Greenberg, 1971.), (Garfinkel

and Nernhauser, 1972b).

The earliest attempts to solve integer linear programs were based

on the idea of rounding-off the variables in the corresponding continuous

linear program; however, these failed because it is easy to construct

examples where the optimal integer answer is not the feasible integer

point nearest to the best l.p. solution - in fact, can be arbitrarily

far away. Only after the initial paper of Gomory (1958) were exact

solutions possible. His idea was that of adding additional constraints

to sequentially generate the convex hull of feasible integer points;

these "cuts" remove part of the original solution space but do not

remove any integer solutions. After again optimizing using the simplex

method, the new non-integral x suggests other cuts, and so forth.

Many different methods of generating these cutting planes are now available,
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but, generally these methods have slow convergence, and have been tested

mostly on problems of less than a hundred integer variables.

The most efficient methods for general integer programs are

currently based upon implicit enumeration techniques - the so-called

"branch-and-bound" method (Agin, 1966), (Lawler and Wood, 1966),

(Mitten, 1970) or "progressive-separation-and evaluation" procedure

(Bertier and Roy, 1964), (Roy, Benayoun and Tergny, 1970). The basic

idea can be illustrated by considering the integer program:

(6.1) Ax -b

Xj e {0,1,2, .. ,u'}) QJ 1 ,2 , , n) .

* T *
An upper bound on P c x can obviously be obtained by solving

the corresponding l.p. with the integer constraints replaced by

0 < Xj < u. (j = 1,2, ... , n) • Now, pick a certain variable to "arbitrate"

or "branch upon" - say x. Problem (6.1) is "separated" into u1 + 1

distinct integer programs in which xi is fixed at its possible values

0,1,2, ..., u1 ; the objective function for each of these subproblems

can then be bounded from abovc by a linear program in which 0 < xj < uJ

(j = 2,3, ..., n) - and these solutions are usually within a few simplex

steps of each other, as x is varied parametrically through its integer

values. To proceed, the "best" choice o. xI , in terms of the various

bounds on P , is taken, and a different variable is chosen for further

exploration, generating a new sequence of subproblems in which two variables

are now fixed at integer values. At successive steps, one takes the

"best" overall candidate solution, irrespective of the number of .4zbltrated
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variables. Under very general conditions, one can show that this procedure

terminates when the first solution with aZZ variables fixed is obtained.

This enumerative approach coul', in principle, require exploration of

all possible 11 (uj + 1) solutions, but in practice behaves rather well

if good rules for the selection of successive variables are used. A

convenient framework kor explaining the various approaches is in

(Geoffrion and arsten, 1972). Commercial mixed-integer codes are now

undergoing extensive computational testing, with encouraging results

for problemr with several hundred integer variables and several thousand

constraints (Roy, Benayoun and Tergny, 1970), (Benichon, Gauthier,

Girod:t, Hentgs, Ribiare and Vincent, 1971), (Mitra, 1973), (Forrest,

H.yst and Tomlin, 1974). It is interesting that the most successful

3olutions use a number of heuristic procedures, and depend strongly on

the way in which the problem is formulated (Geoffrion, 1976).

Naturally there are speedier special-purpose algorithms available

for specific models, for instance, if the l.p.s used to determine

the bounds are of the network flow type. (Balinski and Spielberg, 1969).

Geeffrion and Graves (1974) report a successful application of an older

method due to Benders (1962) to a very large warehouse-location and

m .ilticommodity distribution problem. Other special-purpose methods

and models are described below.

Finally, Kalvaitis and Posgay (1974) describe a very successful

commercial application of integer programming, while Woolsey (1972)

injects a cautionary note.
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7. COMBINATORIAL OPTIMIZATION

The boundary between integer programming and combinatorics is

not a precise one, since many of the problems we consider here have

formulations like (6.1), with 0 or + i constraint coefficients.

However, combinatoric problems are generally more "puzzle-like,"

are either very simple or very difficult, and usually require special

algorithmic development. The most important ones are related to

network applications.

To give some examples, imagine a network (or, if you prefer, a

connected graph) with A undirected arcs and N nodes. Each arc

has a positive unit cost; the total cost of "using" a certain subset

of arcs is the sum of the unit costs associated with those arcs.

Now consider the following different problems:

(1) Given two specific nodes, find the least-cost (shortest) path

(sequence of arcs with nodes in coaJmon) from one node to the

other;

(2) Repeat (i), but find the 2nd,3rd, ..., kth shortest paths;

(3) Find the lesst cost subset of arcs which will connect all nodes

to each other;

(4) Find the minimal-cost tour which passes through all nodes at

least once, returning to the starting node;

(5) Find the minimal-cost tour which traverses each arc at least once;

The shortest-path problem (trivially extended to undirected arcs)

has already been discussed as a special linear program of the network

flow type; it can be solved in the order of N2 seeps using a special
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dynamic-programminz-type algorithm; problem (2) also has an efficient

dynamic-programming formulation. (Dreyfus, 1969).

In problem (3), one can easily show that the desired configuration

is a (spanning) tree, N - I arcs which connect all nodes, and has no

loops. This problem cannot be posed as an 1.p., and yet is susceptible to

almost any kind of "greedy" heuristic: for example, pick the leabt-cost

arc, then add to it the next-lowest-cost arc not forming a loop, then

add to thoce the next-lowest-cost-arc not forming a loop, ... and so on,

until a tree is obtained in at most A steps. This model is useful

in a variety of communication problems (Frank and Frisch, 1971), (Pierce,

1974).

Problem number (4) is the well-known "travelling salesman" problem,

and is fundamentally more difficult than (3). Certain general theorems

are known (Bellmore and Nemhauser, 1968); for example, if the unit costs

obey a "triangle inequality" (it is always cheaper to go from one city

to another in one step than in two), then the optimal tour is a "Hamiltonian

cycle" - a circuit of N arcs visiting each city once and only once.

A variety of different approaches have been proposed for this problem:

dynamic programming, where storage bottlenecks limit the size of the problem;

integer l.inear programming formulat.ions, which required the addition of

2 N - - 1 constraints - later improved by cutting-plane algorithps; and

branch-and-bound algorithms which have variable performance depending on

the heur;Lstics chosen. Bellnore and Nembiauser (1968) provide a summary;

branch-and-bounding appears already as the best method, but only

problems with N < 100 were solved exactly. Held and Karp (1970),
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(1971) have found that sharper bounds, derived from solving a related

spanning tree problem, can produc important efficiencies. Their

approach has been further inproveo hy Hansen and Krarup, (1974), and,

for directed arc networks, by Smh.tb, Srinivasan and Thompson (1975);

computation times seem to vary abcut as N3 "5 for small problems,

but N - 200 is about the lim.t for exact solutions. (Webb, 1971)

and (Lim and Kernighan, 1973) show how to obtain good approximate

solutions f',r larger problems.

Probiem number (5) is talled the "Chinese postman" problem. In

the undirected arc network where avery node has an even number of arcs,

there exists an "Euler tour," a tour which passes through each arc

only once; this is then optimal. In the contrary case, extra trips

are necessary to pass through nodes of odd degree; this is done

through an associated integer "matching" problem for which good

computational experience is available (Edmonds and Johnson, 1973).

Both the travelling-salesman and Chinese-postman problems are

important as building blocks in realistic routing applications.

Orloff (1974a) has synthesized these methods to solve a general

routing problem (in which the minimum-cost tour is to visit a subset

of the nodes and cover a subset of the arcs); this has important

application to the problem of routing a fleet of vehicles out of a

central facility, as in school-but-routing, and refuse scavenging

(Orloff, 1974b). See also (Bennett and Gazis, 1972), (Beltrami and

Bodin, 1974) and the survey in (Bodin, 1975).

The concept of choozing an optisal tour to pass through certain

nodes or arcs of a network can be generalized to the combinatorial
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[problems of "set covering," in which costly su! sets are to be chosen
(from a given family of subsets) so as to span the original set of

:/ / elements at :ninimal total cost; if the selected subsets are also to
be disjoint, it becomes a problem of "set partitioning." See

(Garfinkel and Nemhauser, 1972b, 1972c) and (Balas and Padberg, 1976)

for surveys of methods and rsferences; (Marsten, 1974) reports recent

computational experience.

These set covering/partitioning models can be applied to a variety

of discrete selection problems. Perhaps their most useful application

to date has been to the problem of scheduling airline crews to "cover"

a flight schedule at minimal salary, living-expense, and "deadheading"

costs, subject to various restrictions on work-and-rest times, company

and union requirements, etc. The total problem is quite complex, and

a variety of approaches have been proposed at intra-industry meeetings;

a convenient summary is in (Arabeyre, Fearnley, Sterger and Teather, 1969).

Another highly visible use oi integer programming is in the problem

of deter~iting political districts so as to achieve equity in terms of

absolute deviations of district population from an overall mean. Minimiz-

ing the sum of such deviations over all districts is a set partitioning

problem; if the objective is to minimize the largest of such deviations,

we have a "bottleneck problem" for which a branch-and-bound procedure

haz been tested on a state distincting problem with 40 indivisible popula-

tion units. (Garfinkel and Nemhauser, 1970). A re'ated political

topic is Che problem of determining a fair apportionment of representa-

tives becween political units; Balinski and Young has developed

a new "'quota =ethod" using integer programming ideas, and have applied

it to the U.S. Congress (1971) and the European Parliment (1976).

_at I .-- - - =s- - ... r .- -_ -, _ ... -
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f-Finally, no discussion of combinatorics would be complete without

a discussiin of new results on computational complexity. There are

certain problems, such as maximal-flow, shortest-route, assignment, and

minimal spanning-tree problems, where one can guarantee that the number

of solution steps is less than some polynomi.al function of the problem

parameters; i.e., a "polynomial-time-bounded algorithm" exists

(Edmonds, 1965). Using modern concepts of algorithmic analysis (see,

e.g. (Aho, Hopcraft and Ullman, 1975)), Karp has shown that a variety

of other combinatorial problems are equivalent in the sense that if

any one of them can be solved, thea there is a polynomial-time-bounded

transformation which will solve any of the others; it follows then that

all or none of the members of this ",NP complete class" are solvable

in polynomial time (Zarp, 1972), (Karp, 1975). This class is quite

wade a i contair.s the travelling-salesman, integer-linear programming,

knapsack prole-, and set covering and partitioning problems; since

all of these are computationally difficult, we suspect that none of

this is p.o,'.-mial-tie-bounded. Of course, this does not mean thatI_] there canu..r be efficient algorithms for modarate-size problems, or

even that an "average" problem cannot be solved during a time which is

a polynomial function of its size, as we have seen. In fact, many heuristic

algorithms have already been surprisingly succeesful in solving actual

combinatorial problems. An exciting new line of research is now trying

to quantify this success by looking at the proximate success of heuristics

on distributions of problem parameters; in many cases one can guarantee

that all but small percentage of such problems will be optimally solved

by a fast algorithm (Karp, 1976).-I
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8. DYNAMIC BROGRANHING

Dynamic programming is not so much a method of optimization as it is

a framework in which to efficiently analyze loosely-coupled, repetitive

decision problems. Typically, these problems arise in dynamic models (or f

serial processes) where the decisions made at one instant (or stage) give

rise to a similar problem at a later time (the next stage), in which a

parameter or the state of the system has changed.

A typical model is the resource allocation problem, in which activity

j , operating at level x. restricted to some set of values S. , uses up
J j

an amount a. > 0 of resource, and generates revenue r. (x)

(j = 1,2, ..., N) . Assuming there are B total units of resource, the

global optimization problem is:

N
Max I )

j=l

N
Sa.x. < B

j=1 -

x S (j 1,2, ... , N)
j

If the return functions are linear, and S. is an interval on the real
J

line, this is a simple l.p.; more general problems require special handling,

even with just one constraint. In the dynamic programming approach, we

solve the problem in stages, usually beginning with the last. Let f.1(b)

be the optimal return from the Nth activity, assuming b units of resource

are made available to it; this is got from the simple optimization:
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lN (b) = Maxr (N)

(8.2) aNxN b

x. E SN

which is solved parametrically, for all values of 0 < b < B . Knowing

fN(b) (and having recorded the optimal decision XN(b)) , we now proceed

to the determination of fN-l(b) -- the uptimal return from the last two

activities, assuming b units of resource art available for both. Since

activity N - 1 uses up aN_ of this resource, we have again a one-

dimensional optimization:

N-1(b) = Max rNl(xN_) + fN(b - aN xN_l)

(8.3) aNlxN_l < b

xNd l c SNf1

which is solved parametrically for 0 < b < B . This process is carried

out successively for all preceding stages until solving fl(b) for b = B

gives the optimal total return. Note that the optimization difficulty is

reduced to that of a one-dimensional problem, but that, in exchange, a

sequence of optimal returns (and policies) must be stored for all values of

b . Thus, large dynamic programs are typically storage-limited, and it is

difficult to adequately handle problems with more than 2 or 3 linking

constraints. In other formulations, the result of one stage's optimization

i to leave the system in a different abstract state (such as location and

position in space), rather than with a diminished scalar variable; here the

"curse of dimensionality" requires one to quantize the state space rather

grossly to get an initial approximation in reasonable computation storage,
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and then to successively refine the space (Larson, 1968). Bertela and

Brioschi (1972) have analyzed nonserial models which require a different

kind of successive approximation. Dirickx and Jennergren (1975) examine

myopic policies.

The observation that many dynamic models could be -educed to a series

of one-stage parametric problems is due to R. Bellman, who called it an

optimality principle: "An optimal policy has the property that, whatever

the initial state and initial decision are, the remaining decision must

constitute an optimal policy with regard to the state resulting from the

first decision." (Bellman, 1957). A variety of different formulations

which use this principle can be found in the still-useful texts (Bellman,

1957) and (Bellman and Dreyfus, 1962).

Despite their inherent limitations, dynamic programs are extremely

useful for problems of moderate size, or as subroutines in larger problems.

The premier example of this is the cutting stock or trim problem, thoroughly

investigated by Gilmore and Comory (1961), (1963), (1965), (1966). Imagine

chat an order for different numbers of different lengths is to be filled by

cutting from a number of larger, standard lengths; the problem is to mini-

mize wastage of stock. If the size of the order is large, an approximate

solution can be found by using a linear program in which the variables are

il1 the different possible patterns of cutting the standard lengths. Instead

of enumeratitig (the combinatorial number of) all such patterns, Gilmore and

Gomory generate new ca..didate patterns by solving a related "knapsack

problem," which is the name given to (8.1) when the returns are linear,

r.(x r - x , and the variables are integer, S = (0,1,2, ..., u.1

In this way, they alternate between linear and dynamuir. programs to solve a

complex problem with many indus rial applications.
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The knapsack problem is at important model in its own right, both

because of its usefulness as a building-block in realistic packing sitLua-

tions, ind because of its deceptive simplicity. For example, if the

activities (items to be select-d for the knapsack) are arranged in de-

creasing order r fa > r2/a > ... (decreasing value per unit resource

(space or weight) consumed), and if x. can be fractional, 0 < x. < u. ,

then the solution is trivial: take x1 = Min (u,,Bla1) ; x2 -

Min (u 2 , (B - alx1 )1a2 ) ; etc. It might be thought that i. "greedy"

algorithm might also extend to the integer case by making the obvious

modification in the 2nd term; unfortunately, this is only true for very

special data sets (Magazine, Nechauser and Trotter, 1973), and we know that

the general knapsack problem belongs to the potentially difficult h?-

complete class of problems. Many other integer progra--ing methods, such

as cutting-plane and branch-and-bound algorithms, have been proposed

(Garfinkel and Nemhauser, 1972a).

Dynamic programming is also useful as a theoretical tool, in proving

the cptimality of certain forms of decision, rather than assuming the form,

and merely setting the control parameters opti=ally. Perhaps, the most

important resal- of this kind was the proof that two-bin inventory control

policy was optimal under certain cost and demand assu=ptions (Arrow, Karlin

and Scarf1 1958). Also, one can often show that dynamic optimization

problems in operations research have a li:ing behavior, in *he sense that,

as the planning horizon increases without limit, the op-:imal total return

may be bounded in value (if returns discounted over tine) or be bounded by

a linear function of time (if undiscounted), and the optimal decision may

be stationary; the u timality principle then becomes a recursion relation-

ship which can be solved itetariely. A well-studied example of this is
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the model of Markov programming, in which a decision zt  take a process in

state i at time t into state j at time t + 1 with probability

...(z arp iM .a-reward- -jjz N - - , ,  N) (t = G,1,2, , ) ; I

thus, if the policy is fixed for all t , the process follows a Markov chain, I
and the mean total reward is asymptotically proportional to t . Many

interesting decision problems can be formulated in this framework (Howard, I
1960) and there are numerous extensions (Jewell, 1963), (White, 1969),'[ I
(Mine and Osaki, 1970). If z is a discrete control action and N is

finite, this problem can be solved a number of different ways, including

linear programming. Problems with continuous decision and state spaces

requires a certain amount of delicate analysis, and here we must say that

the theory has far outstripped the applications (Porteus, 1975).

Interesting applications of dynamic programming are appearing regularly

in the literature, particularly in various investment and consumption

(Hakansson, 1970), allocation (Derman, Lieberman and Ross, 1975), and

"stopping" (Leonardz, 1973) models.
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9. CONTROL THEORY

Ji There is an intimate relation between the theory of dynamic programming

and recent developments in control theory, which may loosely be described as

optimization of a system of differential (or difference) equations. A sur-

vey of this area would take many more pages, and we content ourselves with

references to (Bellman, 1967, 1971) for a dynamic programming presentation,

and to (Canon, Cullum, and Polak, 1970) and (Luenberger, 1972) for discussion

of the interaction with mathematical programming.

|i
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10. MULTIPLE OBJECTIVES AND DECISION-MAKING UNDER UNCERTAINTY

Analysts have long realized that optimization of a single fixed objec-

tive is not responsive to the needs of decision-making in the real world,

where many different conditions influence choice. It is of course possible

to explore several different objectives simultaneously to evaluate trade-offs;

this is especially easy in linear programming with only a few conflicting ob-

jectives (Zeleny, 1974). However, the general problem is quite difficult,

since the decision-maker may not be able to define his preference space pre-

cisely until faced with actual comparisons. A variety of different models

may be found in (Cochrane and Zeleny, 1973); (Roy, 1971) is a synthesis of the

different methodologies.

Somewhat the same problem arises in decision-making under uncertainty

(Hertz,1973). In some instances, one can justify a single objective, such

as maximizing a mean value or the probability of gaining a fixed sum. Usually,

however, several aspects of the distribution of outcome seem important; for

example, in the E-V approach of Markowitz (1959), one examines the trade-off

between mean and variance. More generally, the problem is one of comparing

two distributions. Some results can be obtained through ideas of stochastic

dominance, but the preferred appciach seems to be through utility theory, as

developed by Von Neumann and Morgenstern. Given a choice between several

distributions of random outcomes [Pi(x)} , their result states that, given

three reasonable hypotheses which a Rational Economic Man might follow when

constructing preferences among these gambles, the preferences can always be

represented in terms of a nondecreasing utility function, u(x) , idiosyn-

chratic to the decision-maker, by ranking the distributions according to the

expected utility of the ith gamble, U i  f u(x)pi(x)dx . This approach is

well-explained in (Borch,1968) (White, 1969) (Raiffa,1970). Although there

have been numerous objections to utility theory (for example, an E-V decision-

. U .
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maker does not satisfy the hypotheses of the theory), it seems very difficult

to modify. And, it does satisfactorily explain certain observed behavior,

such as paying a premium over the mean loss (profit) for insurance (a lot-

tery ticket) i one is risk-averse (risk-seeking). There has been a great,

deal of attention to the problem of defining multi-attribute preferences,

and ;che construction of an overall utility function; (Keeney and Raiff, 1976)

is the definitive text.

Utility theory finds usage in the models of "decision analysis", a new

guise for statistical decision theory which emphasizes the formal process of

laying out a decision tree, the estimation of the probabilities associated

with nature's plays, the estimation of the utility of the terminal outcomes,

and the use of Bayes' law and dynamic programming to calculate optimal stra-

tegies. (Raiffa,1970) Decision analysis is particularly useful as a pedagog-

ical framework, and as means of structuring communication between the analyst

and the decision-maker. Suggestive applications appear in (Grayson, 1960)

(drilling decisions), (de Neufville and Kenney, 1972) (airport development),

and (Hax and Wiig,1976) (capital investment).

I

%I
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11. STOCHASTIC PROCESSES AND MODELS

Much of the early literature in OR was devoted to the study of random

processes, both because of rapid developments in the 50's, in communications

theory, but also because it war not usual to be trained in this area. Now

the situation is reversed; we take for granted that the OR specialist has had

at least two courses in stochastic processes, and there seem to be few useful

new theoretical developments. (ginlar,1975b) is an example of a modern theo-

retical text.

The most ubiquitous model is, of course, the Markov process, especially

in its discrete-time, discrete state-space version, the Markov chain. In

about every field of application, one can find a Markov chain, possibly im-

bedded in a more complicated process (Kendall, 1953), used to describe suc-

cessive transitions between states. In a certain sense, it represents the

first order of dependence up from a purely independent-transition process,

and its modelling success is due to the fact that higher order dependencies

are rarely needed. The properties of Markov chains have been well-understood

for twenty years, thanks to the still excellent book by Feller (1967).

The other useful model is the renewal process, which describes point

processes as generated by independent, identically distributed random in-

tervals; this is an obvious model in reliability, where failed items are

immediately replaced by new, similar items, but is also useful as a model

for other processes, such as arrival of customers at a queue. (Cox, 1962)

is a good introduction to the field; the full generality of renewal argu-

ments and the various limit theorems are covered in (Feller, 1971).

By combining Markov chains and renewal theory, (so that a transition

between two states i and j takes a random duration sampled from a dis-

tribution depending on i and J) , we obtain the very useful Markov-re-

newal (or semi-Markov) processes. The theory is only mildly more complicated,
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and subsumes many early elaborations on the basic processes. (ginlar,

1975a) surveys the field; (Teugels, 1976) is a bibliography.

The other important extension to these basic theories is the addition

of economic functions, called rewards or potentials, for use in optimization.

For example, if a transition between states i and j took t units of

time, we might generate a profit rj (t) at the end of the interval, arid

add it to other rewards earned from previous transitions. The mathematical

details are easy, and are already being included in introductory texts (Ross,

1970).

Other stochastic topics, such as random walks, branching processes and

diffusion processes find special uses, particularly in queueing theory

(Gaver, 1968) (Newell, 1971), and in attempts to model stock market behavior

(Fama, 1970), but few other applications.

A
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12. QUEUEING THEORY

The study of congestion in service systems was very popular in

the '50s and '60s. Although the basic modelling had been carried out

many years previously by A. K. Erlang, and others, for problems of

telephone traffic, the subsequent development of queueing theory

showed the essential similarity between congestion and waiting-time

phenomena in such diverse applications as road traffic control, inventory

management, delays at toll booths, health care appointment systems,

machine servicing, water resevoir control, airport sched.ting, etc.

In an extensive bibliography, Saaty (1966) claims that there are by 1966

over 2000 refexences in queueing theory, and comments that real improve-

ments in managing congestion phenomena do not match the congestion

caused by the nmuber of theoretical papers on the subject; Lee (1966)

is also pessimistic. Bhat (1969) refutes these arguments in a con-

venient summary o:. the field, and gives a more selective bibliography.

In the prototypical queueing problem we imagine thac customers

1,2,3, ... , n.... .arrive at a service system at points in time

t 1 tI + t2 ,tI + t2 + t3 , ..., (t1 + t2 + . n), ... , and queue up in

front of a single server, who will process them individually, taking

SlS2,S3, ... S ... units of time. We additionally specify FIFO

(first-in, first-out) service priority and assume the server begins

work as soon as a customer arrives. If we let w be the wanitingn

rh
time in the queue of the n customer and assume that the first customer

arrives when the: server is idle, we find:

Jrl
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W 0

w = max (s- t2,0)
0.2.l)

w3 = max (12 + S2 - t3,0)

w = max (Wn + S - t ,0)

One can also describe, e.g., the number in the system found by the

n th arrival. Equations similar to these could, in principle, be found

for other variations in service priority, if the number of servers

were increased to- m (in parallel), if there were serial stages of

queues (with or without intermediate queues), if service was in batches,

etc., etc.

The typical analytic assumptions about the input and service

processes are that the arrival spacings {tl,t 2 ,t 3 , ... , tn,

are independent and identically distributed random variables (thus

arrivals constitute a renewal process), and service times

{Sl,S2,S3, ... Sn' . are also i.i.d.r.v.s , with a different

distribution. In spite of the simplicity of formulation of this

so-called "GIG/i" queue, only a few general results are known:

(1) Statistical equilibrium is achieved if and only if the utilization

factor, 0 = s/t (st - mean service and inter-arrival times),

is strictly less than unity;

(2) The fraction of time the server is idle is 1 - p ;

(3) The customer-average mean waiting time in queue, w , and the time-

average mean number of customers in the queue, q , are related by:

q w/t

-A
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Equivalents of these results hold under more general condit;.ons, for example,

if there are m parallel servers, or if a diff',rent priority scheme is used.

(3) is a very general result which essentially defines what we mean by cus-

tomer-average wait and time-average queue (Little, 1961), (Jewell, 1967),

(Eilon, 1969), (Maxwell, 1970). Extensions are (Stidham, 1972), (Brumelle,

1972).

Further general results seem very difficult. The basic problem is that
th
n delay content, un 

= sn - tn+I , is a two-sided random variable; as long

as the partial sums uI , u1 + u2 , ... are positive, they are identically

w2,w3, .... However (with probability one, if p < 1) , for some k ,

11 + u2 + "'" + u,. will be negative, w 0 , and the process starts
1 2 k+].

over. The analytic determination of the di,tribution of k (the number

served during a busy period) and i = lul + u2 + ... + uki (the length of

the next idle period) seems very difficult in the general case; but, if

they could be determined, we could obtain GIG/I results, such as:

2 2 -2 22+ a2 + (-t)( U p) 2

(12.2) w = t  s _ _2
2t(l - p) 21

2 2
where ot and cs are variance of the inter-arrival and service r.v.s,

- 2

and 2 , the first two moments of idle time (Marshall, 1968a). Alter-

natively, we must find the distribution of w from a Wiener-Hopf integral

equation.

The most popular historical way around these difficulties has been to

use exponential inter-arrival (Poisson arrival) and exponential service

distribution assumptions. Because of the "memoryless" properties of the

exponential, Pr fx > xQ + h I x > x 0 = Pr {x > h) , every interval of

time is a regeneration point, and queueing systems can be described in terms

of continuous-time Markov processes, and solved by linear systems of first-
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oraer "birth-and-death" differential equations. This approach enables us

to model unlimited variations, such as different queue disciplines and

priorities, balking and reneging, interrupted, blocked, and controlled ser-

vice, serial and parallel stages, etc. Arbitrary distributions can be ap-

proximated through sums or mixtures of random variables. Morse (1958) has

many useful models of this type.

Kendall (1951), (1953) was the first to shug that only one of the

- inter-arrival or service distributions need be exporintial to complete the

analysis. For example, in the case of Poisson arrivals, i is distributed

2 - 2
as t , t = (t) , and (12.2) reduces to the Pollaczek-Khintchine formula:

2 - 2as + (s)2

(12.3) W =
2i(l - p

If service times are exponential, one can analyze an imbedded Markov chain,

even with m servers; see, e.g., Kleinrock (1967). Unfortunately, the as-

sumptions of exponentiality led naturally to the use of transform methods,

and the papers of the '60s are overburdened with the machinery of LaPlace

and Fourier.

Some of the most interesting recent research in queueing theory has

been in the area of approximate and bounding results, especially to the

moments of the waiting-time distribution. Kingman (1962b) showed that

(12.2) has the strict upper bound

2 2
- t o(12.3) <- = W(1.)- 2t(1 - p) u

for all GI/G/i queues, and that this bound is a good approximation for

in heavy traffic (p 4 1) , when w is then approximately exponentially

distributed (1962a) (1962b).

- -
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Finding a strict lower bcund in terms of moments is more difficult.

Marshall (1968a) makes some additional shape assumptions on the distribu-

tion of t and gets sharp lower bounds. For example, if E{x - x 0 x > x 0

is decreasing in x 0 (decreasing mean wait for the next customer as a func-

tion of clock time since the last arrival), he obtains

(12.4) W Efi+O) 
u 2 -

which bounds q to within one customer! Other single-server variations are

in (Marshall, 1968b).

Bounds for the G/G/m queue are given by Kingman (1970) and Brumelle

(1971), and have been improved for certain special cases; a convenient sum-

mary is in (Kleinrock, 1976). Finally, we should mention the large amount

of unpublished 4ork on approximations for single- and multi-server Poisson

queues (Marchal, Gross, Harris, 1974), (Nozaki and Ross, 1976), (Takahashi,

1976), and the growing interest in estimators (Law,1975).

A valid criticism of all the above models is that they are only useful

in stable regimes; time-varying parameters and transient response are diffi-

cult to analyze, except in the simplest systems. However, a growing litera-

ture in queueing theory begins by approximating the arrival and departure

processes themselves, making first a deterministic "fluid" approximation to

the average values of these processes, and then adding a second-order "dif-

fusion" approximation. Gaver (1968) has investigated diffusion approxima-

tions to the M/G/l queue, and Newell (1968), (1971) has written extensively

on "rush hour" traffic, when the system is overloaded for a period of time,

and then recovers. Although the concepts are simple, the analysis leads to

Fokker-Planck diffusion equations, and requires care in arguing the limiting

approximations. Kleinrock (1976) contains a clear survey of diffusion models;

Whitt (1974) covers recent contributions to limit theorems.
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Perhaps the most Lnteresting new application of queueing theory has

been in the field of computer time-sharing systems. Kleinrock (1976) con-

tains an excellent description of the analytic and heuristic models developed

to analyze multi-user priority schemes and design computer communication net-

works. The challenge of working with a complicated real network (ARPANET)

has clearly provided a fruitful interaction between queueing theory and prac-

tice. £

AIi
*
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13. RELIABILITY THEORY

The early models of reliability theory was primarily of series-parallel

connections of elements with exponential lifetimes. However, since the early

60's there has been a rapid expansion around two new and important concepts.

The first is the theory of coherent structures, which provides a general

framework for analyzing systems of unreliable elements. The second idea

is to assume certain monotone shape properties of the lifetime distributions

(increasing failure rate and rate average, increasing means residual life,

new better than used," etc.) to bound complex system performance measures,

and determine optimal replacement policies (Barlow and Proschan, 1965, 1975),

(Proschan, 1976).

Current research topics are zurieyed in (Barlow and Proschan, 1976).

Of particular interest are a successful multivariate Z,-eralization of the

failure rate (Marshall, 1975), increased interest in Bayesian modei5 (Tsokos,

1977), and the use of fault trees t, systematically develop failure modes in

complex systems, such as nuclear reactors (Barlow, Fussell, and Singpurwalla,

= 1975).
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14. FORECASTING AND BAYESLAN STATISTICS.

There are two developments in statistics which are influencing the

methodology of operations research. In the empirical forecasting of time

series, the ARM{A (auto-regressive integrated moving-average) models of Box

and Jenkins (1970) provide an economical framewnrk in which to idzntify rea-

sonable underlying mechanisms and carry out the necessary computations. The

theory also puts older exponential-smoothing heuristics on a firm basis.

The other development has been the so-called Bayesian revolution. Sup-

pose we have aome prior information about a random parameter 6 (the inputs

or control settings in a certain process, or the physical or economic condi-

tions surrounding a certain experiment, or the skill of a human operator,

etc.) which we can sumarize in a prior denzity, p( 8 ) ; and suppcse, for

every possible value of , we know the "likelihood", p(x I 8) , the con-

ditional denjity of observing a different random value, x , during some well-

defined experiment. By the use of conditional expectation (Bayes' Law), we

find that, posterior-to-observing the sample value x = x , we can redefine

our knowledge about e to obtain the posterior-to-data density

(14.1) pC8 I ) = kp (x1 8 ) - p(e)

where k is a constant to normalize p(0 I xo) . The current controversy in

the statistical co =unity seems to stem not from (14.1), but from whether a

consulting statistician is permitted to have any personal beliefs about e

to include in the prior, p(0) , or whether he must devise methods to let

the data so=ehow "speak for itself" (Savage, 1962) (Barnett, 1973).

This is hardly a crisis in operation research systems analysis where

the ability to draw on prior experience and analogous situations is permitted,

nay, encouraged in estimation procedures. More importantly, the Bayesian ap-

proach reveals paradoxes In the classical sa=pling-theory school of statistics
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(Lindley 1972, 1975), (Basu, 1975), and in spite of various attempts to re-

concile the two approaches, such as the use of diffuse priors and "empirical

Bayes" techniques, it seems as if the basic sampl2 -theory ideas, such as

point estimation, significance testing, and confidence intervals, must be

reformulated. (Houle, 1973) gives abcut 2000 references in Bayesian sta-

tistics; many new references regularly appear in O.R. journals.

Motivated by estimation problems in insurance, the author has been in-

terested in Bayesian prediction schemes, particularly the estimation o' the

mean value of a future observation posterior-to-data, viz:

I xo  =i xp(x I O)p(6 x )dxdB

which represents the "experience-rated fair premium" in insurance terms.

Actuaries noticed that, for many priors p(O) and likelyhoods p(x I 8)

(14.2) was linear in the data x ; this is true even for nonnormal families,0

and the general conditions under which this is true are now known, and have

been extended to the multi-dimensional case (Jewell, 1974).

In more general forecasting and regression schemes, the Bayesian mean

may not be linear in the data; however, one can easily find the best linear

approximation through the use of least-squares theory. This field is re-

ferred to as "credibility theory" in the actuarial literature (a survey is

in (Jewell, 1976)), and is closely allied with "linear filter theory" in

the communications field (Sage and Melsa, 1971). (Aitchison and Dunsmore,

1975) analyzes other Bayesian prediction schemes.
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15. INDUSTRIAL AND MANAGEMENT MODELS

This section will briefly survey some of the recent trends 1n business

models. The growth and influence of systems ideas over the last twenty

years has been tremendous, and scientific management is now a fact of life f
in all kinds and sizes of industries. I

IInventory control was already a mature field by the 60's, following the

I
development of the basic statistical models (Arrow, Karlin, Scarf,1958)

(Scarf, Gilford, Shelly, 1963). Since that time, the emphasis has been on
I

making the models more realistic and extensive. (Gross and Schrady, 1976) z
is a recent summary; see also the forthcoming book by Silver and Peterson

(1977). (Muckstadt,1973) describes a large-scale application. j
Turning to the production side, an important new trend has been the de-

velopment of integrated systems for production planning, scheduling and in-

ventory control (Hax and Colovin,1974) (Hax and Mead,1975) (Hax,1976b).

(Bitran and Hax, 1976) The problems of logistics, including plant location "

and distribution, have also been the subject of recent intensive investiga-

tions (Eilon, Watson-Gandy, Christofides,1971). (Francis and White, 1974)

(Geisler,1975) (Geoffrion, 1975) (Marlow,1976) See especially the survey

by Hax (1976a). Multilevel analysis is described in (Jennergren, 1976).

Marketing, on the other band, is an area which only recently has been

quantified, apparently with success. Kotler (1971) provides a comprehensive

survey; recent articles of interest are (Little, 1975) and (Hauser and Urban,

1976).

In the area of project management, the most important development of the

60's was in scheduling, using the critical-path methods developed for the

Polaris missile program and the construction of the S.S. France. The basic

models belong to the network class of linear programs, have very simple

algorithms, and are now routinely used in all major construction projects
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(Thornley,1968) (Moder and Phillips, 1970) (Lombaers,1969). Since that time,

attention ha8 been directed towards the resource-loading problem - an inher-

ently difficult problem which is of the NP-complte class (Herroelen,1972)

is a convenient survey. (Shephard, A1-Ayat, and Leachman,1976) is a differ-

ent modelling approach, using dynamic production function theory. Another

actkve area has been zat the selection and budgeting of research and develop-

.nenL projects (Gear, Lockett and Pearson,1971) (Gear and Lockett, 1973)

(N~slund and Sellstedt,1974) (Baker and Freeland,1975). The problems of de-

tailed manpower scheduling are also of continued interest (Bennett and Potts,

1968) (Arabeyre et al, 1969); Bodin (1972) gives a general model. (Baker,1974)

(Coffman, 1975) use recent works on job/shop scheduling and sequencing.

Finally, the most explosLve management science area in the past decade

has been the field of investment and finance. Following the pioneering idea

of Markowitz (1959) to select a portfolio of investments as a trade off be-

tween mean return and variance, many different extensions have been made in

an attempt to improve investment performance; see (Francis and Archer, 1971)

(Sharpe, 1971) (Lorie and Brealey, 1972). Part of the problem may be that the

stock market is too efficient a process for a computer to make money, at least

in the long run (Fama,1970) (Granger and Morgenstern,1970). The optimal de-

sign of bond maturity schedules is, however, a more tractable problem (Bradley

and Crane,1975). Money managers are also using linear programming and other

methods to reduce or increase "float" (Calman, 1968) (Orgler, 1970) (Orr, 1971).

A bibliography of 3,600 works in the finance and investment area is in
I

(Brealey and Pyle, 1973).

k
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16. THE INFLUENCE OF O.R. METHODOLOGIES

Since other speakers at this meeting will be describing various appli-

cations of operational research/systems analysis, I would like to describe

another process which has not been widely noted--the influence of O.R. Metho-

dologies upon other disciplines, particularly in research and teaching.

For example, we are so used to talkin.g of the uses of mathematics, it

is easy to overlook the stimulus that linear programming has given to the

study of convex polytopes, solutions of inequalities, discre2te mathematics,

and graph theory. Linear algebra, including a brief introduction to linear

programming, is now taught to all engineering freshmen and math majors at my

university; si*i ple graphical-solution linear programs even appear in high

school "new math" courses. New algorithms, based upon the complementary pivot

theory of .athematical programming, give promise of providing practical calcu-

latiou o! fixed points--an achievement which will find wide application in

both purL and applied mathematics (Karamardian,1976) (Saigal,1976).

Scarf (1,73) has already applied these fixed-point algorithms to the

computation of economic equilibria--a difficult problem which has heretofore

eluded econcmists for even modest-sized problems. Duality theory, with its

concepts of -.mputed values of resources and of"pricingout" inefficient ac-

tivities, has proved a fertile field for quantifying basic economic notions

such as marginal costs. Large-scale economic planning and optimization is

now possible on a scale undreamed of twenty years ago, thanks to modern

linear programm-.ng codes. Production function theory has changed dramatic-

ally (Shephard, 1376). New terms, like trade-off, cost-benefit analysis, sub-

optimization, efficient frontier, and decentralized control are universally

used and understood.

In statistics, the various interesting problems posed by dynamic pro-

gramming, decision analysis, Markov programming, etc., models havecertainly
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stimulated research iin statistical decision theory, gambling systems, mar-

tingales, potential theory, limit theorems in renewal theory, and so forth.

The concept of monotone shape characteristics for distributions, introduced

in reliability applications, has provided a new approach to bounding mo-

ments in random walks. And, the many possible variations in queueing models

has provided a torrent of marginal contributions to the statistical journals,

much to the concern of the editors (Pyke,1975).

I have already described the changes in almost every field of business

administration; the same can be said about industrial engineering. The

methodologies have also been adopted by electrical engineering, especially

in control theory and in communications network design, as described earlier.

Transportation engineering relies heavily upon queueing theory, network flows,

dynamic programming, etc. (Gazii,1976). Critical path scheduling is taught

routinely in construction engineering. Statistical models of wear are useful

in metal behavior studies. Dynamic programming is used for nuclear fuel

management, and fault tree analysis to isolate nuclear reactor shutdown se-

quences. And so on.

A variety of new sister disciplines have sprung up which also use

O.R. methodologies, as a glauice at the new journals will reveal: urban plan-

ning, environmental engineering, energy analysis, health care systems, etc.

And especially in computer science it is possible to trace the influence

of O.R. methodologies: from queueing theory for the design of computer sys--

tems, through graph theory and combinatorics for the design of efficient data

structures and manipulation procedures, to the common concerns for develop-

ing, testing, and implementing efficient algorithms (Aho, Hopcraft, and

Ullman,1975). It seems to me that there is a certain amount of tension just

now between O.R. and this newest engineering science discipline, caused in

part by the shift in popularity and research support, but also by the reali-

zation that problems of algorithmic efficiency have become too esoteric for

the O.R. analyst, and require the attention of a different kind of specialist.
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17. CRISES WITHIN THE PROFESSION

This tremendous activity and expansion in the field of operational

research/systems analysis has, howevwr, been achieved at the cost of

considerable disorder within the profession, as the discussion sections

of the journals and the conference roundtable discussions reveal; see the

references in Klein and Butkovitch (1976).

The first crisis is over the incredible proliferation in papers and

specialty journals. ORSA/TIMS conference dimensions are staggering, as

are the numbers of regular meetings of numerous special-interest groups

and new specialty societies. Kendall (1960) estimates that, in 1958, one

would have to scan five journals to cover 1/3 of the English-language

contributions and about 18 journals to cover 1/2 of the literature my

estimate of the current situation, based upon scanning our university

libraries, is that about 15 and 50 journals, respectively, would be needed

in 1976. Even traditional journals have fissioned into several parts.

One wonders what libraries can afford to stock them all, or how many people

have "xerox subscriptions." Some will say that this proliferation is the

direct result of the "publish or perish" promotion criteria of American

universities; others point to regulations requiring one to present a paper

to secure travel support to a technical meeting. But it is clear that this

communication explosion is affecting other sciences as well and there is

no easy solution in sight.

With this proliferation has come increasingly narrow specialization,

which we see in academia when students insist they want 'o major in mathe-

matical programming or queueing theory, and the faculty advisors permit them

to do so. Klein and Butkovitch (1976) suggests daxkly thar this is a natural

phenomenon, since the OR/MS academic discipline is an institutionalized

_!
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system of exchange which sets up modular specializations in order to insure

its own survival; they see little hope for institutional change.

Another crisis, perhaps more pertinent to the U.S.A. than to the U.K.,

has been the apprent separation between theory and application. Practi-

• -tioners regularly rage at the mathematical "overkill" in the pages of the

journals, and yearn for the good old days when a simple model could

explicate an observed phenomenon; in rebuttal, researchers point to the

trivial level of many of the applications papers ("How I ... ")and the

universal lack of sponsorship by industry of meaningful research programs.

There are continuing criticisms of the academic programs (Schrady,

1976) which imply that OR/MS training is not responsive to the needs of

industry - being too technique-oriented, over-specialized, having little

understanding of the total systems approach, unable to collect and organize

data or write management reports, and so forth.

Putting these tensions all together, adding the success of new fields,

such as computer science, and contemplating the rapid rate of adoption of

0. R. methodologies by the applications fields (business; economics; trans-

portation, environmental, and communications engineering, etc.), has led

to a larger malady, which might be called a crisis of confidence. We see

this in the searching self-examination of many of the roundtable dis-

cussions ("Is Mathematical Programming Moribund?", "Are We Gambling on

OR/MS Education?"), and in statements to the effect that operational

research has promised too much, delivered too little, and should now be

given a decent burial.
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18. FUTURE "OSPECTS

I prefer to take a somewhat more balanced view of these crises. For

example, there is evidence that, in the U.S., the societies are moving to

correct some of the earlier excesses. ORSA and TIMS have been growing more

closely together, running simultaneous conferences, and sharing membership

administration facilities. Their publication policies have also been

coordinated and rationalized: A new journal, called Mathematics of

Operations Research, has been established to attract important theoretical

articles. Interfaces has been designated as the new joint medium for

describing operational problems of Lmplementing or using OR1
1MS; the quality

of articles is improving under the new editor, who insists that all

articles be readable and that equations be relegated to the appendices.

The parent journals, Operations Research and Management Science, are now

free to concentrate on major articles of interest to all members of the

profession.

Another interesting development has been the sponsorship of a prize

competition for papers on successful applications of MS by the

TIMS College on Practice (Interfaces, Vol. 6, No. 1). The rules are strict:

rhe entries must report a completed, practical application and must present

results that have had a significant impact on the performance of the

organization under study, as certified by management. Because practitioners

do not normally publish such studies, the prize is set at a significant level

($6,000 for the 1977 competition). The actual presentations and the written

papers are extremely interesting, in my opinion, and provide a standard of

professional practice previously unavailable.
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There are no easy solutions to the publication explosion proalem,

although de-emphasis of published works as a university promotion criterion

would certainly help, as would resolution of some of the legal and institu-

tional problems surrounding the inexpensive duplication and distribution of

papers. I believe in market mechanisms and the freedom to fail; journals

which do not serve some useful purpose will soon vanish from the scene.

Who is to que3tion the utility of those which survive?

Academic programs are easily criticized, but one must remember that

there were few texts or courses before 1960, and new programs had to be

grafted onto a variety of different educational formats. It is true there

has been a great deal of theoretical activity relative to the actual appli-

cations, but this is the characteristic of "no ial science" (Kuhn, 1970),

whose first priority is to structure the appropriate and potentially useful

knowledge and explore its theoretical facets. "Few people who are not

actually practitioners of a mature science realize how much mop-up work of

this sort a paradigm leaves to be done or quite how fascinating such work

can prove in the execution" (op. cit., p. 24).

It is also true that our recent gradt'ates, now staffing industry,

government and other teaching faculties, have over-emphasized technique in

place of application, and did not parLicipate in the same school of hard

knocks and simple models that reared our founders. But the same can be

said of any profession. These young people are extremely bright, and, I

believe, more adaptable to new demands by society than many of the tired

pioneers. Ao far as teaching the systems approach is concerned, philosophy

is fine (Churchman, 1968), but what is needed are more excellent texts like

(White, 1975), and good professional articles, developing ideas like those
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in (Bishop,1972) and (Liebman,1976). More consistent signals from research

funding agencies would help useful academic development, as would more

interest by industry in providing research problems and support, and helping

educational programs to make closer ties with reality. "1

OR academicians, on the other hand, must learn to let go of any

proprietary feelings they have about the methodologies they helped to

develop, and pay closer attention to the substantial issues facing their

field of primary interest, be it business, government, or industrial

engineering. The great strength of the profession has come from the

ability to construct interesting models of real-world phenomenon, and to

use the solutions to resolve actual problems. The outlines of the applied

methods are now clear for all to see, and, at some point, methodology

becomes pure mathematics or statistics or computer science, the concern

of other specialists. It is a mark of maturity that our methods are now

influencing other fields, and that the availability of these new support

skills frees us to return to the central issues of modelling and problem-

solving.

-i -i- . -- -- -=
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